

Экспертиза HTP: Математическое моделирование и оптимизация производственных процессов

Более 20 лет разрабатываем и внедряем решения на базе отечественного ПО

Эффективность в бизнесе — ключ к успеху

В конкурентной среде важно не только производить и продавать, но и делать это максимально эффективно:

- Минимизировать затраты ресурсов
- Сокращать количество отходов
- Выполнять задачи в кратчайшие сроки

Зачастую компании полагаются только на опыт сотрудников, но это не всегда лучшее решение. Такой подход приводит к ряду проблем:

- Плохая масштабируемость ручные методы не справляются с ростом производства
- Человеческий фактор ошибки, усталость, потеря компетенций при текучке кадров
- Отсутствие данных для обоснования решений

Любые бизнеспроцессы можно описать цифрами и формулами. Это даст гарантированный результат

Мы поможем:

- Перевести ваши бизнес-цели на язык математических формул
- Сформулировать целевые параметры
- Построить модель для поиска оптимальных решений
- Оптимизировать ваши процессы для достижения максимальной эффективности

Реализованный кейсы:

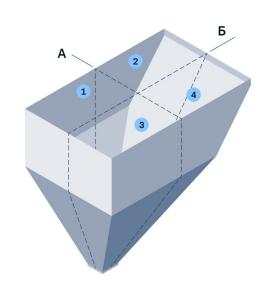
- Цифровой двойник цеха рудоподготовки
- Система оптимизации раскроя картона на гофроагрегате

Цифровой двойник цеха рудоподготовки

Описание системы

Цифровой двойник цеха рудоподготовки — это система, которая позволяет моделировать процесс движения и динамику изменения сырья по технологическому тракту доменной печи с момента поступления на комбинат до загрузки в печь и внутри стационарных бункеров/силосов

Математическая модель описывает механику движения сырья внутри стационарных бункеров и силосов и построена на основе экспериментов с использованием RFID-меток и 3D-лидара



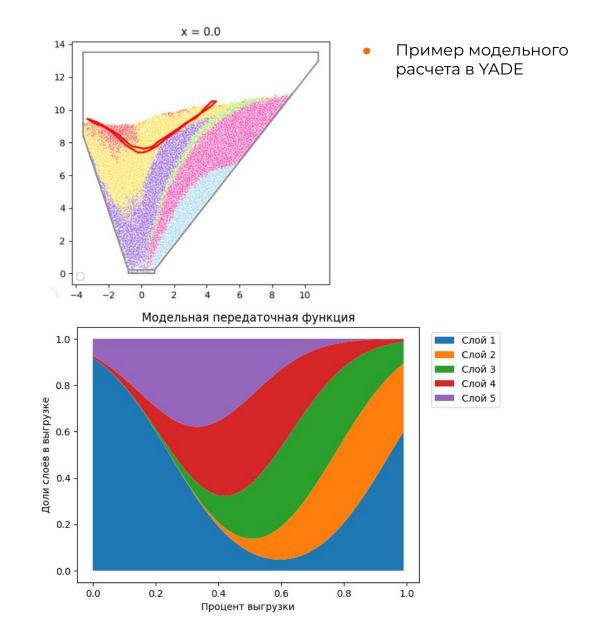
Проблематика

Сырье, а именно, агломерат, кокс, окатыш и различные добавки для плавки чугуна, поступает и хранится в стационарных бункерах и силосах

В каждом бункере/силосе находится свой тип сырья с различным химическим составом

На предприятии отсутствует понимание механики смешивания шихты внутри бункеров и силосов, поэтому не удается узнать точный химический состав сырья, который загружается в доменную печь, а это влияет на качество выплавляемого чугуна

Функционал системы


- Моделирование движения сырья с различным химическим составом от момента поступления в железнодорожных вагонах на предприятие до загрузки в стационарные бункеры и силосы
- 2 Анализ механики движения и смешивания сырья внутри стационарных бункеров/силосов
- На основе моделирования и анализа расчет химического состава порций шихты выгружаемых из стационарных бункеров/силосов для загрузки в доменную печь

Моделирование сырья

Математическая задача движения сыпучих сред в бункерах и силосах — сложная.

- Моделирование проводилось методом дискретных элементов расчетами в YADE
- Параметры модели
 подтверждались натурными
 экспериметнами с RFID метками и
 3D лидаром
- Требования online
 прослеживаемости были
 выполнены методом упрощенных
 расчетов с помощью передаточной
 функции

- 1. Для построения модели использовались данные из MES системы о загрузке сырья в бункеры/силосы, также проводились эксперименты, для которых использовалось RFID оборудование и 3D-лидар
- 2. Устанавливалось оборудование для считывания RFID-меток на входе/выходе из бункера, учитывая время и место загрузки их в стационарный бункер, а также время выхода метки из стационарного бункера.

Таким образом вычисляли передаточную функцию, описывающую механику движения сырья внутри стационарных бункеров.

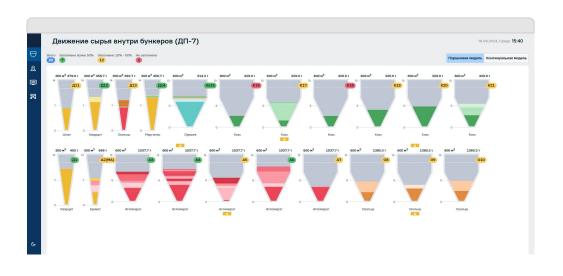
Полученная передаточная функция позволила рассчитать химический состав выгружаемого сырья

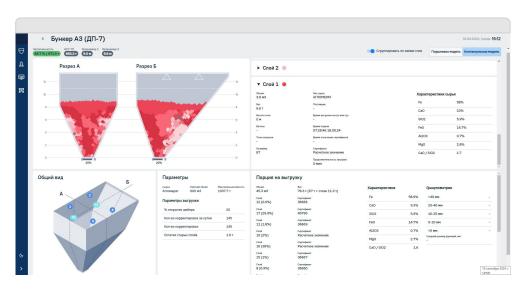
Процент считывания меток (процент выживаемости) составил не менее 85%

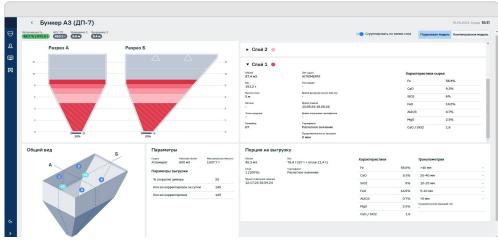
RFID-метки

Использовались самоклеящиеся пассивные UHF RFID метки на бумажной основе с дальностью считывания до 8 метров

Метки предназначены для наклейки на диэлектрические материалы




Выводы по эксперименту

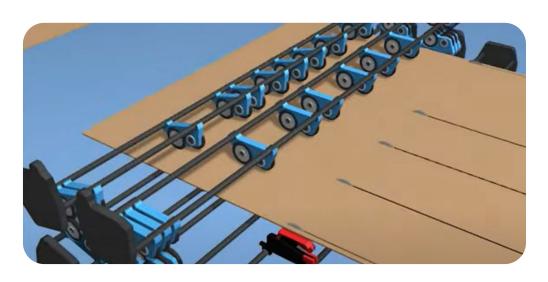

- Эксперимент дал высокое качественное согласие с моделью, удалось подтвердить характер истечения материала образование воронки, порядок выхода слоев.
- В экспериментах наблюдается умеренная асинхронность движения меток по сравнению с движением сырья. Причины асинхронности: различия в коэффициентах трения меток и сырья, а также более крупный размер меток относительно средней фракции агломерата.
- С учетом неравномерного выхода меток и особенностей эксперимента, обработанные экспериментальные данные дают высокое схождение с моделью — 4-6%.

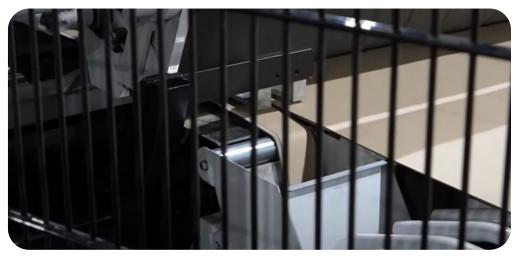
Визуализация сырья внутри бункеров

Результат

После внедрения Цифрового двойника цеха рудоподготовки, металлургическая компания может:

- рассчитывать и прогнозировать химический состав выгружаемых порций шихты по времени
- повысить качество выплавляемого чугуна
- снизить количество кокса на одну тонну выплавляемого чугуна




Система оптимизации раскроя картона на гофроагрегате

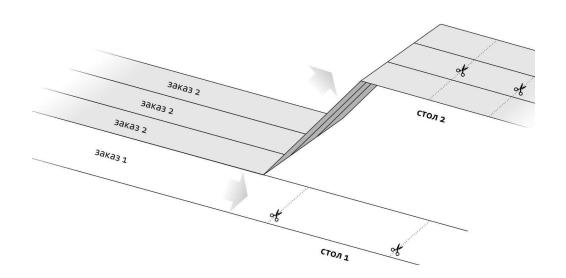
Описание задачи

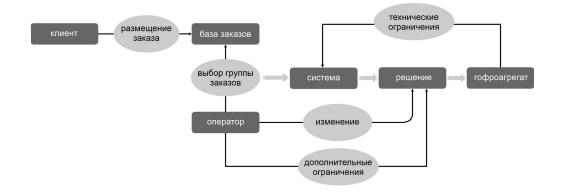
На заводе одного из крупнейших производителей картона потребовалась замена импортной системы раскроя картона от компании ОМР на отечественную

Компания HTP разработала и внедрила свою систему оптимизации раскроя картона

Цель проекта

Достичь средней обрези не хуже, чем у импортной системы и при этом максимально удовлетворить параметрам заказов в раскрое


Как применяется решение


Оператор отправляет группу заказов на оптимизацию раскроя, указывая необходимые ограничения.

Система строит оптимальное решение, которое состоит из очереди раскроев для агрегата.

Каждая задача — набор параметров:

- ширина полотна;
- размещение заказов на полотне;
- разделение на верхний и нижний стол;
- длительность исполнения и другое.

Основной функционал ПО

Оптимизация раскроя, исходя из параметров выбранных заказов

Выбор заказов для раскроя с указанием ограничений и параметров

Интеграция в форму 1С

ІТ-решения для лидеров будущего

- С 2000 года на рынке заказной разработки
- Разработка и внедрение отечественного ПО для горнодобывающих, металлургических, машиностроительных компаний и госсектора
- 2 офиса (Москва, Томск), 170+ человек в штате
- 350+ успешно завершенных проектов
- Все решения разработаны на территории РФ
- Аккредитованы в Минцифре

Основные компетенции

Нейросети и AI

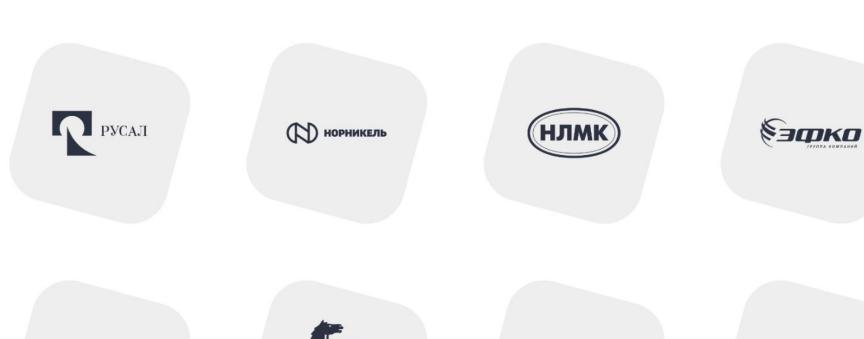
ИИ, ML, распознавание речи, NLP

Наукоемкие решения

Математическое моделирование и оптимизация

Highloadсистемы

Системы с большим количеством запросов, в т.ч. для мониторинга оборудования



Компьютерное зрение

Системы видеоаналитики, распознавания и анализа изображений

Ключевые партнеры

EBPA3

KAMAZ

Банк России

Отзывы о работе НТР

ООО «НТР» работало с нами по проекту 4196 «Автоматизация табельного учета». Работы были выполнены качественно и в срок. В настоящее время ООО «НТР» выполняет работы по проекту 4857 «Расширение функциональности табельного учета».

EBPA3

Настоящим письмом подтверждаем положительный опыт реализации ИКТ-проекта №71-2023 «Развитие системы контроля соблюдения технологического процесса окраски деталей в цеху окраски-2 Прессово-рамного завода» с использованием компьютерного зрения (ML).

Коллектив компании ООО «НТР Томск» показал высокую вовлеченность в проект и экспертность в технологиях визуального контроля и видеоаналитики. Дальнейшее развитие проекта и техническую поддержку планируем осуществлять в партнерстве с вами.

Камаз

ООО «НТР» работало с нами по проектам:

- «метановыделение» (разработка вебприложения расчета и визуализации объема выделившегося метана при выбросе угля и газа);
- «журнал планирования проверок датчиков метана» (разработка веб-журнала графика проверки датчиков метана);

Работы были выполнены качественно и в срок. Рекомендуем ООО «НТР» как надёжного подрядчика для выполнения работ по разработке заказного программного обеспечения

EBPA3

Работы были выполнены качественно, в срок и в соответствии с современными отраслевыми стандартами. Результаты пилотного проекта признаны успешными и принято решение о внедрении данной технологии в промышленное производство.

Технологические покрытия

Отзывы о работе НТР

В период времени с Декабря 2023 года по Август 2024 года в пункте досмотра Входной группы Паркинга Терминала В и в пункте досмотра Аэроэкспресса в Терминале Е проводилась опытная эксплуатация Системы контроля состояния Операторов - «ВеКО» (далее - Система).

Уже имея достаточный опыт работы с похожими Системами, хотим отметить высокую стабильность работы Системы, а также крайне сжатое время выгрузки архива записи событий.

По нашему мнению, Система контроля состояния Операторов - «ВеКО» продемонстрировала высокую эффективность, отказоустойчивость, полностью отвечает заявленным характеристикам и может быть использована во внутренних процедурах контроля сотрудников АО «Шереметьево Безопасность».

Шереметьево Безопасность

Свяжитесь с нами

Получите исчерпывающую консультацию по вашим задачам

Николай Михайловский

Генеральный директор

+7 903 790-58-15

nickm@ntrlab.com

Сорухин Алексей

Директор проектов по цифровизации

+7 903 186-98-36

asorukhin@ntrlab.com