Спикер о работе:
За последние два года диффузионные модели задали новую планку качества в генеративном моделировании.
Эта красивая концепция объединяет в себе нейродиффуры, моделирование на основе скор-функции, приближенные методы байесовского вывода и стохастические дифференциальные уравнения. Их основным недостатком является большое время генерации объекта.
В докладе мы рассмотрим причины успеха диффузионных моделей и пути повышения их эффективности за счет уменьшения работы вхолостую на начальном этапе обратной динамики. Получившаяся модель обобщает стандартные диффузионные модели и иерархические вариационные автокодировщики в рамках более общей парадигмы.
Презентация: https://drive.google.com/file/d/1W8VCnfgCDcY1GN9F95SSnhtnJfSscCV-/view?usp=sharing
Запись: https://youtu.be/hDCVU_hDblE