В конце июля вышла статья с описанием новой архитектуры для […]
Почему летает вертолет? Он поднимается вверх за счёт подъёмной силы […]
В прошлой статье мы рассказали о RuTaR — большом открытом […]
Все привыкли к тому, что ChatGPT, DeepSeek, Llama и другие […]
В синем углу ринга — детекторы ИИ. В красном углу […]
Это, конечно, не очень правдивый заголовок, но зато привлекает внимание. […]
Система отслеживания внимания создавалась под конкретную задачу — для одного из московских аэропортов. Там, на досмотровых постах, операторы смотрят на экраны интроскопов, проверяя багаж. Работа монотонная, требующая постоянной концентрации, а отвлечение — потенциальный риск для безопасности. Нужно было понять, когда человек действительно теряет фокус: отвернулся, задремал, отвёл взгляд или вообще вышел из поля зрения камеры.
Когда большие языковые модели начали неожиданно хорошо отвечать на абсолютно разные вопросы и даже вроде бы выходить за те рамки, на которых их обучали, все, конечно, сильно обрадовались. Настолько обрадовались, что наращивать мощности и получать новые крутые результаты оказалось интереснее, чем выяснять, почему вообще LLM работают, как именно они хранят знания и хранят ли их вообще.
“Встречу” придумали авторы из MIT, их идея была в том, чтобы попробовать объединить лучшее из двух, пока что редко пересекающихся, вселенных — диффузионных моделей с Full-Sequence Diffusion и нейросетей с Teacher Forcing. На пересечении этих названий и получилось Diffusion Forcing.